Appendix

We are working in the sagittal (z,y) plane and assume that the section of the eye has

the form of an ellipse with the semiaxes a and b,
2 2
2 + ” =1. (1)

The fovea has the coordinates (—a,0). Consider the upper half of the ellipse.

Figure 1: Stage

In polar coordinates, the upper-half of the ellipse can be parametrized as follows
z=—R(0) cosl, y=R()sinf, 0<0<m,

where
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Vb2 cos? 0 + a? sin® 0
However, this parametrization is inconvenient for our calculations. Instead, we view the
whole arc as the graph of the function
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where z runs from —a to a. For any value z; between —a and a, the length of the arc between
the points (—a,0) and (z1,y;), where y; = f(z1), is given by
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Denoting by E(¢, m) the elliptic integral of the second kind, F (¢, m) = f0¢ V1 —m sin®tdt,
we see that

Le(z)=0F (arccos(—ﬁ) 1-— a_2> (4)

v a’’ v )
Claim: For any two points zg and 21, —a < zy < z1 < a, there exists a unique (convex)
catenary tethered at the points (2o, yo) and (z1,y;) on the (upper half of the) ellipse and
such that its length between 2, and z; is equal to the length of the arc of the ellipse between
the same points.
Recall that the equation of the general convex (hanging down) catenary is

Z+ «

y(z) = =X+ s - cosh(
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There are three parameters: s > 0, a, and A\, and we claim that they can be chosen in a
unique way for the catenary to satisfy our requirements, which are

1. y(z) connects two points, (zo,yo) and (z1,y1), on the ellipse.

2. The length of the catenary (5) between z; and z; is equal to the length of the arc
between (29, o) and (z1,y;) on the ellipse.

The first requirement means

20+ « [z
—A + s cosh( . )=y =0b 5 (6)
and
2+ a 22
— X+ s cosh( . )=vy1=0 1—?. (7)
The second requirement is
Le(zl) - Le(ZO) = Lcat(z(}v Zl) ) (8)

where L.q(20,21) is the arc length of the catenary (5) between zy and z;. An easy to
calculation shows that

Loat(20,21) = s | sinh(Z: : %) _ sinh(® : Y91 9)
Denote
Ay=uy1—y, Az=2z—2, AL=L(21)— Le(20). (10)
It follows from (6) and (7) that
A
cosh(zl+a)—cosh(Z0+a) _— (11)
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And it follows from (8), that

) 1+ a i 20+ « AL
h — sinh = —. 12
sm(s)sm(s) . (12)
Note that
AL > Ay.
Then equations (11) and (12) can be solved with respect to ¢ and 2% in terms of Ay,
AL, and s:
znta 1 5 S V(AL — (Ay)? + 452
—=I [23 {(AL+Ay) +V/(AL)2 — (Ay) AL~ Ay (13)
and
20+a I o 5 V(AL)? — (Ay)? + 452
—=I [25 { (AL + Ay) + /(AL — (Ay) AL- Ay (14)

Subtract (14) from (13) and multiply the result by s:

1
Az=s-In {1 + 55 ((AL)? = (A9 + VALY = (ByP V(ALY — (Ay) + 432)} (15)
We use this equation to solve for s. There is a unique solution because. for any A > 0, the
function

g(s):sln[1+2L§(A+va+432)], s>0, (16)

is concave and monotone increasing from 0 at s = 0 to its asymptotic value VA as s goes
to infinity. Note that A = (AL)? — (Ay)? in our case and that Az < v/A because the arc of
the chord connecting two points on the ellipse is shorter than the corresponding arc of the
ellipse, (Az)? + (Ay)* < (AL)*.

After solving equation (15) for s, we turn to equation (13) and solve for a:

a=—z+s-In [2—15 { (AL + Ay) + \/(AL)2 — (Ay)? \/<AL)A2;£AAZJ;2 A }] (17)

Next, from equation (7) find A:

A:scosh(zl+a)—y1. (18)
In the case zyp = —a, it may be easier to get o from (14),
1 V(AL)? — (Ay)? + 452
= ‘In|— < = 2 _ 2
a=a+s-In [25 { (AL + Ay) + v/ (AL)2 — (Ay) NN (19)
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and then find A from (6):

A=s cosh(_a+a

). (20)

Apart from graphing the curves, there are two places where a somewhat sophisticated com-
putational software is needed: one is to evaluate the elliptic integrals L.(z), and the other
one is to solve equation (15). We used Mathematica for all numerical tasks.

S

Within the same framework, the second question we dealt with was as follows. Given
the right tether point (z1,y;) on the ellipse, find the left tether point (zo,yo) such that the
corresponding catenary just touches the vision axis z.

First, we notice that not for all z; there is a solution. Fix the left end of the catenary
at the point (—a,0) (this means zp = —a in the formulas above). If z; is very close to the
left-most position —a, the arc of ellipse from (—a,0) to (z1,y1) is too short for the catenary
to hang below the z-axis. One can show that the slope of the catenary at z = —a will be
strictly positive when z; is close to —a. On the other hand, when z; = a, the whole catenary
will hang below the z-axis, and the slope of the catenary at z = —a is strictly negative in
this case. Because the slope at z = —a changes continuously (monotone decreasing) as we
move z; from —a to a, there must be a value z, such that the catenary tethered at the points
(—a,0) and (z.,y.) on the ellipse, has the slope = 0 at z = —a. For the catenary (5) the
slope at z is

dy(z) . . 2+«
= sinh
7 sinh( .

).

It is zero when z + @ = 0. For this to happen when z = —a we must have a = a. Then
A = s as follows from (20). And there are a few other equalities that must hold. But this
does not help in finding z, analytically, it must be found numerically. We have done this for
specific values of a and b.

Figure 2: Touch

Thus, for all z; < z, and —a < 2y < 21, the corresponding catenary cannot hang below
the z-axis.

The continuity argument again shows that when z; > z,, there is a critical 2] in the
interval (—a, z1) such that for all 2y in (27, 21| the catenary is too short even to reach the



z-axis. For zp = 2§, the minimum of the catenary will be zero, ¥, = 0, the catenary will
touch the z-axis. If zy < 2§, the minimum will be negative, y,,;, < 0. Note that in this case

We should mention that the value of 2z} depends on zj, not only on @ and b. Finding z} (or
the corresponding y; value) can be done numerically.
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Figure 3: Touch 2



