
Appendix

We are working in the sagittal (z, y) plane and assume that the section of the eye has
the form of an ellipse with the semiaxes a and b,

z2

a2
+
y2

b2
= 1 . (1)

The fovea has the coordinates (−a, 0). Consider the upper half of the ellipse.
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Figure 1: Stage

In polar coordinates, the upper-half of the ellipse can be parametrized as follows

z = −R(θ) cos θ , y = R(θ) sin θ , 0 ≤ θ ≤ π ,

where

R(θ) =
ab√

b2 cos2 θ + a2 sin2 θ
(2)

However, this parametrization is inconvenient for our calculations. Instead, we view the
whole arc as the graph of the function

y = f(z) = b

√
1− z2

a2
, (3)

where z runs from −a to a. For any value z1 between −a and a, the length of the arc between
the points (−a, 0) and (z1, y1), where y1 = f(z1), is given by

Le(z1) =

z1∫
−a

√
1 +

(
df(z)

dz

)2

dz =
z=−a cos t

b

arccos(−z1/a)∫
0

√
1− (1− a2

b2
) sin2 t dt .
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Denoting by E(φ,m) the elliptic integral of the second kind, E(φ,m) =
∫ φ
0

√
1−m sin2 t dt,

we see that

Le(z1) = bE

(
arccos(−z1

a
), 1− a2

b2

)
. (4)

Claim: For any two points z0 and z1, −a ≤ z0 < z1 ≤ a, there exists a unique (convex)
catenary tethered at the points (z0, y0) and (z1, y1) on the (upper half of the) ellipse and
such that its length between z0 and z1 is equal to the length of the arc of the ellipse between
the same points.

Recall that the equation of the general convex (hanging down) catenary is

y(z) = −λ+ s · cosh(
z + α

s
) (5)

There are three parameters: s > 0, α, and λ, and we claim that they can be chosen in a
unique way for the catenary to satisfy our requirements, which are

1. y(z) connects two points, (z0, y0) and (z1, y1), on the ellipse.

2. The length of the catenary (5) between z0 and z1 is equal to the length of the arc
between (z0, y0) and (z1, y1) on the ellipse.

The first requirement means

−λ+ s cosh(
z0 + α

s
) = y0 = b

√
1− z20

a2
, (6)

and

−λ+ s cosh(
z1 + α

s
) = y1 = b

√
1− z21

a2
. (7)

The second requirement is

Le(z1)− Le(z0) = Lcat(z0, z1) , (8)

where Lcat(z0, z1) is the arc length of the catenary (5) between z0 and z1. An easy to
calculation shows that

Lcat(z0, z1) = s

[
sinh(

z1 + α

s
)− sinh(

z0 + α

s
)

]
. (9)

Denote
∆y = y1 − y0 , ∆z = z1 − z0 , ∆L = Le(z1)− Le(z0) . (10)

It follows from (6) and (7) that

cosh(
z1 + α

s
)− cosh(

z0 + α

s
) =

∆y

s
. (11)
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And it follows from (8), that

sinh(
z1 + α

s
)− sinh(

z0 + α

s
) =

∆L

s
. (12)

Note that
∆L ≥ ∆y .

Then equations (11) and (12) can be solved with respect to z1+α
s

and z0+α
s

in terms of ∆y,
∆L, and s:

z1 + α

s
= ln

[
1

2s

{
(∆L+ ∆y) +

√
(∆L)2 − (∆y)2

√
(∆L)2 − (∆y)2 + 4s2

∆L−∆y

}]
(13)

and

z0 + α

s
= ln

[
1

2s

{
− (∆L+ ∆y) +

√
(∆L)2 − (∆y)2

√
(∆L)2 − (∆y)2 + 4s2

∆L−∆y

}]
(14)

Subtract (14) from (13) and multiply the result by s:

∆z = s · ln
[
1 +

1

2s2

(
(∆L)2 − (∆y)2 +

√
(∆L)2 − (∆y)2

√
(∆L)2 − (∆y)2 + 4s2

)]
(15)

We use this equation to solve for s. There is a unique solution because. for any A > 0, the
function

g(s) = s ln[1 +
1

2s2
(A+

√
A
√
A+ 4s2)] , s > 0 , (16)

is concave and monotone increasing from 0 at s = 0 to its asymptotic value
√
A as s goes

to infinity. Note that A = (∆L)2 − (∆y)2 in our case and that ∆z <
√
A because the arc of

the chord connecting two points on the ellipse is shorter than the corresponding arc of the
ellipse, (∆z)2 + (∆y)2 < (∆L)2.

After solving equation (15) for s, we turn to equation (13) and solve for α:

α = −z1 + s · ln

[
1

2s

{
(∆L+ ∆y) +

√
(∆L)2 − (∆y)2

√
(∆L)2 − (∆y)2 + 4s2

∆L−∆y

}]
(17)

Next, from equation (7) find λ:

λ = s cosh(
z1 + α

s
)− y1 . (18)

In the case z0 = −a, it may be easier to get α from (14),

α = a+ s · ln

[
1

2s

{
− (∆L+ ∆y) +

√
(∆L)2 − (∆y)2

√
(∆L)2 − (∆y)2 + 4s2

∆L−∆y

}]
(19)
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and then find λ from (6):

λ = s cosh(
−a+ α

s
) . (20)

Apart from graphing the curves, there are two places where a somewhat sophisticated com-
putational software is needed: one is to evaluate the elliptic integrals Le(z), and the other
one is to solve equation (15). We used Mathematica for all numerical tasks.

Within the same framework, the second question we dealt with was as follows. Given
the right tether point (z1, y1) on the ellipse, find the left tether point (z0, y0) such that the
corresponding catenary just touches the vision axis z.

First, we notice that not for all z1 there is a solution. Fix the left end of the catenary
at the point (−a, 0) (this means z0 = −a in the formulas above). If z1 is very close to the
left-most position −a, the arc of ellipse from (−a, 0) to (z1, y1) is too short for the catenary
to hang below the z-axis. One can show that the slope of the catenary at z = −a will be
strictly positive when z1 is close to −a. On the other hand, when z1 = a, the whole catenary
will hang below the z-axis, and the slope of the catenary at z = −a is strictly negative in
this case. Because the slope at z = −a changes continuously (monotone decreasing) as we
move z1 from −a to a, there must be a value z∗ such that the catenary tethered at the points
(−a, 0) and (z∗, y∗) on the ellipse, has the slope = 0 at z = −a. For the catenary (5) the
slope at z is

dy(z)

dz
= sinh(

z + α

s
) .

It is zero when z + α = 0. For this to happen when z = −a we must have α = a. Then
λ = s as follows from (20). And there are a few other equalities that must hold. But this
does not help in finding z∗ analytically, it must be found numerically. We have done this for
specific values of a and b.
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Figure 2: Touch

Thus, for all z1 ≤ z∗ and −a ≤ z0 < z1, the corresponding catenary cannot hang below
the z-axis.

The continuity argument again shows that when z1 > z∗, there is a critical z∗1 in the
interval (−a, z1) such that for all z0 in (z∗1 , z1] the catenary is too short even to reach the
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z-axis. For z0 = z∗1 , the minimum of the catenary will be zero, ymin = 0, the catenary will
touch the z-axis. If z0 < z∗1 , the minimum will be negative, ymin < 0. Note that in this case

ymin = −λ+ s . (21)

We should mention that the value of z∗1 depends on z1, not only on a and b. Finding z∗1 (or
the corresponding y∗1 value) can be done numerically.
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Figure 3: Touch 2
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