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Supplementary Materials 1 

A. The qVA Method  2 

In the qVA method (Patent: US 2019/0038125; Lesmes LA. IOVS 2018; 59: ARVO E-3 

Abstract 1073)41, a single-optotype d' psychometric function (Figure S1a) is described as: 4 
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where 𝜏 is the VA threshold, corresponding to the optotype size at d'=2, and a VA range of the 6 

psychometric function ∆, that is, the range of optotype sizes that covers d' = 1 to d' = 4 7 

performance levels, and 𝜔 = log"# 35 − log"# 1.25. The smaller the range is, the steeper the 8 

slope of the psychometric function. From this single-optotype d' psychometric function, qVA 9 

derives the probability of observing the correct identification of different numbers of optotypes 10 

(Figure S1c) via the single-optotype psychometric function of percent correct (Figure S1b), 11 

taking into account the particular chart design. In this paper, a 10 alternative forced choice task 12 

was implemented in the qVA methods. 13 

PLEASE INSERT FIGURE S1 HERE 14 

In the qVA simulations, the two-dimensional parameter space included 700 linearly 15 

spaced threshold (𝜏	) values between -0.5 and 1.3 logMAR, and 699 log-linearly spaced range 16 

(∆	) values between 0.1 and 1.5 logMAR. The stimulus space consisted of 91 linearly spaced 17 

optotype size values from -0.5 to 1.3 logMAR, with a sampling density of 0.02 logMAR.   18 

Based on a pilot experiment, the prior (Figure S2, top left) was set to have highest 19 

probabilities in the two-dimensional parameter space within a square of VA thresholds between -20 

0.1 and 0.9 logMAR and ranges between 0.2 and 0.6 logMAR. The prior distribution 	𝑝#8�⃗�; was 21 

constructed in the following steps, where �⃗� = (𝜏, ∆), 𝑝  refers to probability density across 22 
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parameter space 𝜃 and subscript 0 represents prior. First, marginal distributions for both 23 

parameters were defined as hyperbolic secant functions: 24 

𝑝#"(𝜏) = sech A𝜏-./0123/-38log10(𝜏	) − log10(𝜏4.23);B,                (S 2.1) 25 

𝑝#"(∆) = sech	(	∆-./0123/-3	8log10(∆) − log10(∆4.23);,                (S 2.2) 26 

where sech(𝑥) = %
5#65$#

 ; (𝜏4.23, ∆4.23)	= (0.2, 0.4) were the modes of the respective secant 27 

functions; (𝜏-./0123/-3, 	∆-./0123/-3	) = (4, 4) were the spreads of the respective secant functions.  28 

Then 𝑝#"(𝜏) was transformed into 𝑝#%(𝜏): 29 

D
𝑝#%(𝜏) = 𝑝#"(𝜏), 𝜏 ∈ (0.9,1.3],

𝑝#%(𝜏) = 𝑝#"(0.9), 𝜏 ∈ [−0.1,0.9],
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, 𝜏 ∈ [−0.5, −0.1).
                       (S 3) 30 

The prior distribution was then constructed as: 31 

𝑝#8𝜃; = 𝑝#%(𝜏)𝑝#"(∆)/∑ 𝑝#%(𝜏)𝑝#"(∆)?@@⃗ ,                                                       (S 4) 32 

where ∑ 𝑝#%(𝜏)𝑝#"(∆)?@@⃗  normalized the sum of the prior probability to 1. 33 

Figure S2 shows the evolution of the joint posterior distribution in one simulated qVA 34 

run for simulated Observer 1. The procedure started with a broad prior distribution of the two 35 

parameters of the acuity psychometric function. As the test proceeded, the posterior distribution 36 

became narrower (decrease in 68.3% HWCI and SD) and converged on the true parameter values 37 

(decrease in bias).  38 

PLEASE INSERT FIGURE S2 HERE 39 

To assess VA, the qVA method uses an active learning algorithm to estimate two 40 

parameters, the acuity and range, of the acuity psychometric function in four steps (Figure S3): 41 

(1) The joint prior distribution of the two parameters of the acuity psychometric function, 𝑝#8𝜃;, 42 

is defined in the two-dimension parameter space of �⃗�. (2) The optotype size of the test stimulus 43 



 3 

on the next row is selected to optimize the expected information gain on the parameters of the 44 

psychometric function. (3) The posterior distribution of 𝜃, 𝑝/8�⃗�;, is updated by Bayes’ rule 45 

based on the observer’s response after each trial that consists of multiple optotypes of the same 46 

size. (4) Steps (2) and (3) are repeated until the stop criterion is met (e.g., a pre-determined 47 

number of rows or precision).  48 

PLEASE INSERT FIGURE S3 HERE 49 

B. The E-ETDRS Method  50 

The E-ETDRS method17 uses a heuristic procedure to measure VA (Figure S4). Test 51 

stimuli consist of 10 optotypes at 20 sizes, equally spaced between -0.3 and 1.6 logMAR (20/10 52 

and 20/800 Snellen equivalent) with a step size of 0.10 logMAR. The test has a screening phase 53 

and a threshold phase. The screening phase provides a coarse estimate of the observer’s VA and 54 

the initial level(s) of optotype size to be tested in the threshold phase. In the threshold phase, the 55 

test starts with the optotype size(s) determined in the screening phase. More levels are added 56 

until the upper and lower bounds of the size range are found. The upper bound of the size range 57 

is defined by the smallest optotype size at which all five letters are correctly identified or the 58 

largest optotype size achievable, whichever is smaller. The lower bound of the size range is 59 

defined by the largest optotype size at which none of the five letters is correctly identified or the 60 

smallest optotype size achievable, whichever is larger.  In this manner, the E-ETDRS samples 61 

the full size range of the acuity psychometric function. The E-ETDRS procedure samples a pool 62 

of five letters (without replacement), presented one at a time at each of the optotype sizes within 63 

the size range, and counts the number of correctly identified letters as the final acuity estimate. 64 

Visual acuity score (VAS) is the number of letters correctly identified in the threshold phase, 65 

plus 5 letters for each size between the largest achievable test size in the E-ETDRS method, 66 
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which is 1.6 logMAR in our implementation, and the upper bound tested in the threshold phase.  67 

Visual acuity in logMAR is computed as: 68 

VA(logMAR) = 1.7 − 0.02 × VAS.                                                       (S 5) 69 

PLEASE INSERT FIGURE S4 HERE 70 

C. The FrACT Method 71 

The FrACT method is an adaptive procedure for measuring VA26,30. It assumes that the 72 

acuity psychometric function has an unknown threshold 𝜈#	but a fixed slope 𝑠 = 2:   73 

𝑃(𝜈) = 𝑝BCDEB5 + (1 − 𝑝BCDEB5)/(1 + (𝜈/𝜈#)F),                              (S 6) 74 

where 𝑝BCDEB5 = 0.1 is the guessing rate in a 10-AFC task, and the acuity threshold 𝜈# 75 

corresponds to the optotype size at which correct identification rate is 55% (Figure S5). 𝜈 and 𝜈# 76 

in FrACT method is in decimal unit, equivalent to -log10(𝜈#) logMAR. Using the best PEST 77 

algorithm, FrACT samples the optimal (maximum likelihood) test optotype from -0.76 to 1.11 78 

logMAR in each trial and provides an estimated threshold acuity after each trial. In the 79 

simulations, we found our MATLAB maximum likelihood implementation of the FrACT method 80 

generated VA estimates that were 0.0145 logMAR higher than the original FrACT method in 81 

each trial.  This was corrected by adding a constant to the estimates from the MATLAB 82 

implementation. 83 

PLEASE INSERT FIGURE S5 HERE 84 

D. Evaluations of accuracy and precision of the estimates from the qVA method. 85 

The qVA provided a joint posterior distribution of the two parameters of the acuity 86 

psychometric function, acuity and range, on each row. The expected parameter value after the nth 87 

row in the mth simulation was computed from the corresponding marginal posterior distribution: 88 
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𝜃DEG = ∑ 𝜃D ∙ 𝑝EG(𝜃D|𝑟EG, 𝑥EG)?' ,                                           (S 7) 89 

where  𝜃D = 𝜏	𝑎𝑛𝑑	∆,  for a = 1 and 2, respectively; 𝜃DEG, 𝑟EG, 𝑥EG, and 𝑝EG(𝜃D|𝑟EG, 𝑥EG) are 90 

the estimated  𝜃D, observer’s response, optotype size and marginal distribution after the nth row 91 

in the mth simulation. The marginal distributions were computed from the joint posterior 92 

distribution 𝑝!""𝜃%𝑟𝑛𝑚, 𝑥𝑛𝑚&: 93 

  𝑝!"(	𝜏	|𝑟𝑛𝑚, 𝑥𝑛𝑚) = ∑ 𝑝!""�⃗�%𝑟𝑛𝑚, 𝑥𝑛𝑚&∆  ,                                            (S 8) 94 

  𝑝!"(	∆	|𝑟𝑛𝑚, 𝑥𝑛𝑚) = ∑ 𝑝!""�⃗�%𝑟𝑛𝑚, 𝑥𝑛𝑚&𝜏  .                                            (S 9) 95 

The bias of an estimated parameter after the nth row is defined as: 96 

𝐵𝑖𝑎𝑠E = ∑ (𝜃DEG − 𝜃D,LMF5NO5N)/𝑀G  ,                                        ( S10) 97 

where  𝜃D,LMF5NO5N is the parameter value of the simulated observer, and M ( = 1000) is the total 98 

number of simulated runs.          99 

The cross-run variability of the estimated parameters was quantified by the standard 100 

deviation across independent simulation runs. The standard deviation (SD) of the estimates of the 101 

parameter 𝜃D after the nth row across M runs is defined as: 102 

𝑆𝐷E = `∑ (?'())?Q'()*)
R

,                                                      (S 11) 103 

where �̅�DE is the average estimate of parameter 𝜃D after the nth row across M runs: 104 

�̅�DE = ∑ 𝜃DEGG 𝑀⁄  .                                                      (S 12) 105 

E. Between-block variability 106 

Assume the following generative model for a subject: 107 

x1S = µ1 + εS + ε1S,                                                (S13.1) 108 

xTS = µT + εS + εTS,                                                (S13.2) 109 
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xUS = µU + εS + εUS,                                                (S13.3) 110 

where i, k, and l represent the qVA, E-ETDRS, and FrACT methods, respectively; j represents 111 

the block number;	x1S,	xTS, and xUS are the estimated VA from the qVA, E-ETDRS, and FrACT 112 

methods, respectively, in jth block; µ1S,	µTS, and µUS are the true acuity from the qVA, E-ETDRS, 113 

and FrACT methods, respectively, in jth block; εS, a normal random variable of N(0, σ0.1U,VU.-T) 114 

that only varies across blocks, is the noise introduced by the uneven transparency on the surface 115 

of the foil; ε1S, εTS, and εUS, normal random variables of N(b1, σ1), N(bT, σT), and N(bU, σU) that 116 

vary trial by trial, are the intrinsic measurement errors of the qVA, E-ETDRS and FrACT 117 

methods, respectively. 118 

The mean estimated VA from each method approximates: 119 

xi1 = µ1,                                                       (S14.1) 120 

xiT = µT,                                                      (S14.2) 121 

 xiU = µU.                                                       (S14.3) 122 

 123 

We define: 124 

 xi1)T = µ1 − µT,                                                (S15.1) 125 

xi1)U = µ1 − µU.                                                (S15.2) 126 

The total variances of the estimated VA differences between the qVA and E-ETDRS 127 

methods, and between the qVA and FrACT methods are: 128 

Var1)T =
"
W)"

∑ (x1S − xTS − xi1)T)%S = "
W)"

(∑ ε1S%S + ∑ εTS%S ),       (S16.1) 129 

Var1)U =
"
W)"

∑ (x1S − xUS − xi1)U)%S = "
W)"

(∑ ε1S%S + ∑ εUS%S ).       (S16.2) 130 

where 𝐽 is the total number of blocks. We define: 131 
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�̅�X =
Y+6Y,6Y-

<
 ,                                                (S17.1) 132 

then we have:  133 

𝑉𝑎𝑟Z,X =
"
W)"

∑ (𝑥Z[ − �̅�X)%[ = "
W)"

∑ (%Y+)Y,)Y-
<
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"
W)"
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<

)%[ +∑ 𝜀[%[ +134 

∑ 𝜀Z[%[ ),  (S17.2) 135 

𝑉𝑎𝑟\,X =
"
W)"

∑ (𝑥\[ − �̅�X)%[ = "
W)"

∑ (%Y,)Y+)Y-
<

+ 𝜀[ + 𝜀\[)% =[
"
W)"

(∑ (%Y,)Y+)Y-
<

)%[ +∑ 𝜀[%[ +136 

∑ 𝜀\[%[ ),(S17.3) 137 

𝑉𝑎𝑟],X =
"
W)"

∑ (𝑥][ − �̅�X)%[ = "
W)"

∑ (%Y-)Y+)Y,
<

+ 𝜀[ + 𝜀][)% =[
"
W)"

(∑ (%Y-)Y+)Y,
<

)%[ +∑ 𝜀[%[ +138 

∑ 𝜀][%[ ).  (S17.4) 139 

Therefore, the total variances from the intrinsic measurement errors of each method are: 140 

𝑉𝑎𝑟Z = (𝑉𝑎𝑟Z,X − 𝑉𝑎𝑟\,X + 𝑉𝑎𝑟Z)\)/2,                  (S18.1) 141 

𝑉𝑎𝑟\ = (𝑉𝑎𝑟\,X − 𝑉𝑎𝑟Z,X + 𝑉𝑎𝑟Z)\)/2,                   (S18.2) 142 

𝑉𝑎𝑟] = (𝑉𝑎𝑟],X − 𝑉𝑎𝑟Z,X + 𝑉𝑎𝑟Z)])/2 .                  (S18.3) 143 

The standard deviation of the estimated VA from each method for the subject in the foil 144 

condition is 145 

SDZ = p(𝑉𝑎𝑟Z,X − 𝑉𝑎𝑟\,X + 𝑉𝑎𝑟Z)\)/2,                  (S19.1) 146 

SD\ = p(𝑉𝑎𝑟\,X − 𝑉𝑎𝑟Z,X + 𝑉𝑎𝑟Z)\)/2,                   (S19.2) 147 

SD] = p(𝑉𝑎𝑟],X − 𝑉𝑎𝑟Z,X + 𝑉𝑎𝑟Z)])/2.                  (S19.3) 148 

F. Estimated VA and range in the psychophysical experiment 149 

PLEASE INSERT FIGURE S6&S7 HERE 150 


