
Supplementary Material 

Power spectra of eye movements with varying temporal windows 

One assumption we made during our method of “stitching” different epochs of fixation 

back to back and performing power spectra computations with a sliding temporal 

window is that power spectra of eye movements are not affected by this manipulation. 

In Figure A1 and A2, we show that this is the case for both Brownian motion and real 

eye movement traces (regardless of whether microsaccades are removed or not). 

 

  



 
 
Figure A1. The effect of (more accurately, its lack thereof) window size and sampling rate 

on power spectra of Brownian motion. (top left) Brownian motion (with a diffusion constant 

of 40 arcmin2/sec) was simulated for a range of temporal window sizes (each trace shows 

one simulated trial). (top right) The average power spectra of Brownian motion for 

different temporal windows (from 0.0625s to 4 s). The different shades of red indicate 

different window size. These power spectra were almost identical regardless of the epoch 

length. (bottom left) Brownian motion (D = 40 arcmin2/sec) simulated for 1 second at 

various sampling rates. (bottom right) The average power spectra of Brownian motion at 

different sampling rates (from 128 to 2048 Hz). The different shades of red represent 

sampling rate. As expected, there is more energy in traces with higher sampling rates but 

the slope or shape of the power spectra remains the same. 

 



 
 
Figure A2. The effect of (more accurately, its lack thereof) window size and sampling rate 

on power spectra of real eye movement traces (microsaccades and blinks have been 

removed and drifts were stitched back to back). The order of panels, what they represent 

and color conventions are similar to Figure A1. 

 



 

Diffusion constant calculations 

For simplicity, we will first focus on one-dimensional Brownian motion. Let 𝑝(𝑥, 𝑡) be the 

probability density of eye position along one spatial dimension and time. Assuming that 

at 𝑡 = 0, 𝑥 = 0, the solution to the so-called diffusion equation, 
𝜕𝑝

𝜕𝑡
= 𝐷

𝜕2𝑝

𝜕𝑥2
, is a normal 

distribution with 𝜇 = 0 and 𝜎2 = 2𝐷𝑡. For two-dimensional simple isotropic Brownian 

motion, the solution is simply the multiplication of two normal distributions, which 

essentially doubles the variance. Therefore, the diffusion constant is 𝐷 =
𝜎2

2𝑛𝑡
, where 𝑛 

indicates the number of dimensions. The variance, 𝜎2, can be estimated as an 

ensemble average of squared displacements, 〈𝛥𝑑2〉.  

Figure A3 visualizes this process. Stitched drift traces from an older adult were used to 

compute squared displacements within a rolling window of 264ms in length (with 50% 

overlap with successive placements of the window on drift traces). Finally, by taking the 

average of the ensemble, we obtained the squared displacement versus time lag curves 

shown in the left panel in Figure A3 (solid lines).  The dashed lines have a slope of 

2𝑛𝐷′, where 𝐷′ is the estimated diffusion constant. 

What if the 2D Brownian motion is not isotropic but have different diffusion constants 

along each dimension? Instead of 〈𝛥𝑑2〉 = 4𝐷𝑡 as in isotropic case (i.e., 𝐷𝑥 = 𝐷𝑦 = 𝐷), 

the square displacement will be 〈𝛥𝑑2〉 = 〈𝛥𝑑𝑥
2〉  +  〈𝛥𝑑𝑦

2〉  = 2𝑡(𝐷𝑥 + 𝐷𝑦). In other words, 

one can estimate the horizontal and vertical diffusion constants independently and take 

their average to obtain the isotropic-equivalent 2D diffusion constant, i.e., 𝐷 = (𝐷𝑥 +

𝐷𝑦)/2. Indeed, the average diffusion constants are what we report in this paper. The left 

panel in Figure A3 also shows the squared displacements for horizontal and vertical 

dimensions of drifts (blue and orange lines, respectively). 

We found large anisotropies in diffusion constants in our dataset. The right panel in 

Figure A3 plots the horizontal and vertical diffusion constants for all observers. In most 

cases, spectral whitening was driven by the horizontal component of ocular drifts.  

 



 
 
Figure A3. (left) Squared displacement of drifts as a function of time lag for an older adult. 

The blue, orange, and yellow solid lines represent horizontal, vertical, and vector-summed 

squared displacements. The dashed lines represent the average slope, a proxy to the 

underlying diffusion constant. (right) The horizontal and vertical (drift only) diffusion 

constants for all observers in our data set. The black, red, and blue symbols represent 

young adults, old adults, and patients with AMD, respectively. Note that all points are 

below the 1:1 line, indicating strong anisotropy of drifts.  
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Mediation Analysis 

Details of the mediation analysis followed closely those described in Chung et al. 

(2015). Specifically, we computed how much of an effect of an independent variable on 

a dependent variable can be explained via a mediator. As shown in Figure 6 and the 

main text in Results, we found that acuity, PRL eccentricity and log-transformed 

diffusion constant each exhibits a significant correlation with whitening factor, for 

observers with macular disease. Thus, for the analysis, we took whitening factor as our 

dependent variable; and we tested a combination of having acuity, PRL eccentricity and 

diffusion constants as the independent variable or the mediator (fixation stability was not 

tested because it did not exhibit a significant correlation with whitening factor). We first 

determined if each of these variables followed a normal distribution. Given that acuity 

was expressed in logMAR and we already log-transformed the diffusion constants, 

these two variables satisfied the normality requirement. For the analysis, we also log 

transformed the PRL eccentricity so that it satisfied the normality requirement as well. 

These variables were then grand-mean centered. We used the lavaan (“latent variable 

analysis”: Rosseel (2012)) package in R to perform the mediation analysis. The 

following table lists the ratio of the indirect effect to the total effect. The indirect effect 

refers to the effect of an independent variable on the dependent variable (in this case, 

the whitening factor) through the mediator. The total effect is the sum of the indirect 

effect and the direct effect of the dependent variable on the whitening factor. A ratio of 

one (or close to one) means that the effect of the independent variable on the whitening 

factor is completely explained by the mediator.  

Independent Variable Mediator Ratio (indirect/total) 

Acuity PRL eccentricity 1.023 

PRL eccentricity Acuity –0.017 

Acuity Diffusion constant 0.420 

Diffusion constant Acuity 0.153 

PRL eccentricity Diffusion constant 0.454 

Diffusion constant PRL eccentricity 0.238 

 


