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Appendix A: Main symbols used 
in the text 

 

b Base of logarithm when x represents the log of 

the physical stimulus units 

c Michelson contrast 

pc  Pedestal Michelson contrast 

cθ∆  Threshold Michelson contrast difference be-

tween two stimuli on a 2AFC trial 

1 2c  Tuning function parameter: semi-saturation con-

trast of the Naka-Rushton function 

pf  Pedestal spatial frequency 

fθ∆  Threshold spatial frequency difference between 

two stimuli on a 2AFC trial  

G Random variable representing the gain signal in 

Goris et al.’s neuronal spiking model 

g The value of G on a particular stimulus presen-

tation 

h Density of neuronal tuning functions along the 

stimulus (x) axis, equal to 1 zδ  

I Integral approximation of the Fisher information 

(found by approximating the sum of Fisher in-

formation across neurons using an integral) 

i Integer index of the neurons in a population 

J Exact expression for the Fisher information 

j Integer index of the neurons in a population 

K The number of neurons being monitored by the 

observer 

hk  Parameter that sets the value of h when 0z =  in 

the “Exponential Naka-Rushton” parameteriza-

tion 

maxrk  Parameter that sets the value of maxr  when 

0z =  in the “Exponential Naka-Rushton” 

parameterization 

qk  Parameter that sets the value of q when 0z =  in 

the “Exponential Naka-Rushton” parameteriza-

tion 

hm  Parameter that controls how quickly h increases 

as an exponential function of z in the “Exponen-

tial Naka-Rushton” parameterization 

maxrm  Parameter that controls how quickly maxr  in-

creases as an exponential function of z in the 

“Exponential Naka-Rushton” parameterization 

qm  Parameter that controls how quickly q increases 

as an exponential function of z in the “Exponen-

tial Naka-Rushton” parameterization 

m 
maxh rm m+  

N Random variable representing the number of 

spikes produced by a neuron 

n The value of N on a particular stimulus presen-

tation 

N Vector of random variables representing the 

spikes produced by the population of neurons 

n The value of N on a particular stimulus presen-

tation 

P Probability 
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Pθ  Probability of a correct response at threshold 

performance level 

p Probability density 

Q Function that describes how Fisher information 

declines with increasing relative spontaneous 

firing rate, 0 maxr r  

q Tuning function parameter: tuning sharpness 

R Random variable representing the mean re-

sponse of a neuron 

( )r x  The neuron’s tuning function, which gives the 

value of R on a particular stimulus presentation 

0r  Tuning function parameter: spontaneous firing 

rate 

maxr  Tuning function parameter: maximum incre-

ment from 0r  

S An intractable definite integral (defined in 

Equation (48)), which forms part of the integral 

approximation of the Fisher information for the 

“Constant Gaussian” parameterization (see Ap-

pendix F) 

T A definite integral that forms part of the integral 

approximation of the Fisher information for the 

“Exponential Naka-Rushton” parameterization 

(see Appendix G) 

u Parameter of the gamma distribution for the 

gain signal (used in Appendix D) 

v Parameter of the gamma distribution for the 

gain signal (used in Appendix D) 

W Weber fraction 

w Tuning bandwidth of the Gaussian tuning func-

tion (full width at half height), in the same units 

as x 

ω Tuning bandwidth of the Gaussian tuning func-

tion (full width at half height) in octaves, as-

suming that x is the log of the physical stimulus 

value 

X Random variable representing the stimulus level 

x The value of X on a particular stimulus presen-

tation 

X̂  Random variable representing the estimated 

stimulus level after decoding the spike counts 

x̂  The value of X̂  for a particular stimulus pres-

entation 

px  Pedestal value of x 

x∆  Difference in x between two stimuli on a 2AFC 

trial 

xθ∆  x∆  at threshold 

z Tuning function parameter: stimulus value cor-

responding to the “middle” of the tuning func-

tion, i.e. the peak of the Gaussian function, or 

the log semi-saturation contrast for the Naka-

Rushton function 

zδ  Spacing between neighbouring z-values in the 

neuronal population, equal to 1 h  

γ lnq b  

ζ Transformation of z such that, if ζ has a uniform 

distribution, z has an exponential distribution 

ξ Unspecified physical stimulus units when x is 

the log of the physical stimulus units 

pξ  Pedestal value of ξ 

θξ∆  Threshold difference in ξ between two stimuli 

on a 2AFC trial 

ijρ  Pearson correlation between the spike counts of 

neurons i and j 

ijP
ρ  Pearson correlation between the Poisson spiking 

processes of neurons i and j in Goris, Movshon 

& Simoncelli’s (2014) neuronal spiking model 

ijGρ  Pearson correlation between the gain values of 

neurons i and j in Goris, Movshon & Simon-

celli’s (2014) neuronal spiking model 

σ Standard deviation 

Gσ  Standard deviation of the gain signal in Goris et 

al.’s neuronal spiking model 

tuningσ  Standard deviation of the Gaussian tuning func-

tion 

( )xτ  Precision for decoding a stimulus with value x 

Φ The integral of a Gaussian with unit area and 

variance, and zero mean 
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Appendix B: Effects of tuning 
functions on correlations 

Effect of spike rate 

In this section, we prove that the neuronal correlation, 

ijρ , given by Equation (17) of the main text, always in-

creases with increases in mean firing rate of either neuron. 

First, let us keep ( )ir x  constant, while varying ( )jr x .  

Then, from Equation (17), 

ij A yρ = , (B.1) 

where A is a constant, given by 

2

2

( )

1 ( )

i
G

G i

r x
A

r x
σ

σ
=

+
, (B.2) 

and 

2

( )

1 ( )

j

G j

r x
y

r xσ
=

+
. (B.3) 

The derivative of y with respect to ( )jr x  is given by 

2 2

1

( ) (1 ( ))j G j

dy

dr x r xσ
=

+
, (B.4) 

which is always positive.  Then, since ijρ  must always 

increase monotonically with increases in y, ( )ij jd dr xρ  

must also be positive.  Therefore, increasing ( )jr x  while 

( )ir x  remains constant always causes ijρ  to increase.  The 

same argument applies to increasing ( )ir x  while ( )jr x  

remains constant.  Therefore, increasing ( )ir x  or ( )jr x  or 

both always causes ijρ  to increase. 

 

Effect of tuning similarity 

In this section, we prove that ijρ  increases with tuning 

similarity between the two neurons.  Since ijρ  is also af-

fected by the overall firing rate, we show the effect of in-

creasing the difference in mean spike rate while keeping 

the sum of mean spike rates constant.  Let us define S and 

D to be the sum and difference, respectively: 

( ) ( )i jS r x r x= +  (B.5) 

( ) ( )i jD r x r x= − . (B.6) 

Then, by expressing ( )ir x  and ( )jr x  in terms of S and D, 

and substituting into Equation (17), we obtain 

2

2

G
ij Y

σ
ρ = , (B.7) 

where 

2 2

2 2 4 2(1 2) 4G G

S D
Y

S Dσ σ

−
=

+ −
. (B.8) 

ijρ  and Y vary monotonically, and therefore both peak at 

the same D value, so the D that maximizes ijρ  is that for 

which 0dY dD = .  It is easily shown that 

0 0dY dD D= ⇒ = .  Thus, for a given sum of spike 

rates, the correlation is highest when the two neurons have 

identical tuning.  Figure B.1 plots ijρ  as a function of D 

for 10S =  and 0.2Gσ = . 

 

 

Figure B.1.  Correlation, ijρ , plotted as a function of D for 

10S =  and 0.2Gσ = , according to Equations (B.7) and (B.8). 

 

Appendix C: Setting up a popula-
tion of neurons 

 

The first stage of setting up a population of neurons 

was to calculate the log semi-saturation contrast, z, for 

each neuron.  In the “Constant” parameterizations, the 

other neuronal parameters ( maxr , q, and relative spontane-

ous firing rate, 0 maxr r ) were constant across the different 
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neurons.  In the “Exponential” parameterizations, maxr  

and q were allowed to vary as functions of z according to 

Equations (24) and (25), respectively. 

For all the simulations of contrast discrimination that 

we performed for this paper, the pedestal values were 

clearly suprathreshold, and within the range of semi-

saturation contrasts found physiologically.  For these ped-

estals, the actual values of minz  and maxz  in the model do 

not matter, as long as they are sufficiently far from the 

ends of the range of pedestals.  For our contrast discrimi-

nation simulations, minz  was −3, and the maxz  was as 

high as possible without exceeding 1.  This ensured that 

the stimulus values that we used (x from −2 to 0) were 

well away from the ends of the range of z-values, as as-

sumed by our equations.  These values of minz  and maxz  

correspond to Michelson contrasts of 0.001 and 10, re-

spectively; although a Michelson contrast greater than 1 is 

physically impossible, fitted Michelson semi-saturation 

contrasts of up to 12 have been obtained in physiological 

studies (Chirimuuta, et al., 2003) – in this case, the 

physiological data would have been collected only over 

the lower portion of the contrast-response function. 

  For our simulations of spatial frequency discrimina-

tion, minz  was set to −0.3 and maxz  was as high as possi-

ble without exceeding 1.7; these were sufficiently far from 

the edges of the range of log spatial frequency pedestals 

(0.4 and 1.2) for the performance to be negligibly affected 

by the values of minz  and maxz . 

For the “Constant” parameterizations, the z-values 

were equally spaced along the x-axis, with a spacing of 

1 h , starting at minz z= .  For the “Exponential” parame-

terizations, we had to place each z value along the x-axis 

so that the local density of neurons along the log contrast 

axis was given by exp( )h hh k m z= .  We defined a vari-

able, ζ, that is related to z in such a way that a flat distri-

bution of ζ maps onto the required distribution of z; we 

then stepped through the ζ-values in equal steps, and ob-

tained the corresponding z-value for each ζ. 

First, we defined the (constant) step in ζ as 1 hkδζ = .  

Since ( )1 1 hm z
hz h k eδ = = , we have 

hm z
e zδζ δ= . (C.1) 

As 0δζ → , we have 

hm z
d e dzζ =∫ ∫  (C.2) 

and therefore 

hm z

h

e

m
ζ = , (C.3) 

giving 

ln( )h hz m mζ= . (C.4) 

We used Equation (C.3) with minz z=  and maxz z=  to 

give minζ  and maxζ , respectively.  Then we stepped from 

minζ  to maxζ  in equal steps of 1 hkδζ = , calculating the 

corresponding values of z using equation (C.4). 

 

Appendix D: Mean reciprocal of 
the gain 

 

In Goris et al.’s (2014) neuronal spiking model, the 

gain signal varies according to a gamma distribution: 

1 exp( )
( )

( )

u

u

g g v
p g

u v

− −
=

Γ
, (D.1) 

where the shape parameter, u, is given by 21 Gu σ= , and 

the scale parameter, v, is given by 2
Gv σ= .  This gives a 

distribution with a mean of 1 and a variance of 2
Gσ . 

The mean reciprocal of the gain is given by 

0

( )
mean[1 ]

p g
G dg

g

∞

= ∫  (D.2) 

2

0

1
exp( )

(
mean[1 ]

)

u

u
g g v g

u
G d

v

∞

−= −
Γ ∫  (D.3) 
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 (D.4) 
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v

−Γ −
= ×

Γ
 (D.5) 

mean[1
1

]
1

1
G

u v
= ×

−
. (D.6) 

Letting 21 Gu σ=  and 2
Gv σ= , we obtain 

2

1
mean[1 ]

1 G

G
σ

=
−

. □ (D.7) 
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Appendix E: Relating decoding 
precision to 2AFC psychophysi-
cal performance 

 

In this appendix, we show how to convert the decod-

ing precision into a measure of psychophysical perform-

ance.  Our focus is on 2AFC tasks, one of the most preva-

lent psychophysical procedures.  On each trial of a 2AFC 

discrimination task, observers are presented with two 

stimuli (Stimulus 1 and Stimulus 2), with stimulus values 

1x  and 2x .  The stimulus with the higher x value is called 

the target, and the task is to say which stimulus is the tar-

get. 

Let us suppose the observer performs this task by es-

timating the value of each stimulus, and choosing the 

stimulus with the highest estimated value.  We can for-

mally describe this process as follows.  Let 1̂x  and 2x̂  be 

the estimated x values of Stimuli 1 and 2, respectively.  

Define a decision variable, 1 2ˆ ˆd x x= − , and choose Stimu-

lus 1 if 0d > , choose Stimulus 2 if 0d < , and guess if 

0d = . 

Let us define x∆  to be the magnitude of the true dif-

ference between the stimulus values: 

1 2x x x∆ = − . (E.1) 

If the distributions of estimated stimulus values are Gaus-

sian and the estimates are unbiased (which, to a good ap-

proximation, are both the case for the model parameteriza-

tions that we consider in this paper), then the decision 

variable, d, will have a Gaussian distribution with mean 

1 2x x− .  As illustrated in Figure E.1, if the standard devia-

tion of the decision variable is dσ , then the probability of 

a correct response, as a function of x∆ , is given by 

( )(correct) dP x σ= Φ ∆ , (E.2) 

where Φ is the integral of a Gaussian with unit area and 

variance, and zero mean.  Thus, the discrimination thresh-

old, xθ∆  (i.e. the stimulus difference corresponding to the 

threshold proportion correct, Pθ ), is given by  

( )1
dx Pθ θσ −∆ = Φ . (E.3) 

The value of Pθ  that defines the threshold falls some-

where in the middle of the range 0.5 to 1; different studies 

use different values. 

It will often be useful to take x to be the logarithm of 

the physical stimulus value; in this case, xθ∆  is the 

threshold difference of log physical values.  To express 

the threshold in terms of physical stimulus values, ξ  

  
 

Figure E.1.  The probability of a correct response.  (A) The case 

of 1 2x x> .  The curve plots the probability density function of 

the decision variable, d, which is assumed to be a Gaussian with 

standard deviation, dσ .  In this case, the mean of d, i.e. 

1 2x x− , is given by x∆ .  The observer responds correctly (i.e. 

chooses Stimulus 1) when 0d > .  The probability of a correct 

response is given by the area of the shaded portion.  (B) The 

case of 2 1x x> .  In this case, the mean of d, i.e. 1 2x x− , is 

given by x−∆ .  The observer responds correctly (i.e. chooses 

Stimulus 2) when 0d < .  The probability of a correct response 

is again given by the area of the shaded portion.  The areas of 

the shaded portions in (A) and (B) are both the same as that in 

(C), which shows the integral of a Gaussian with zero mean and 

standard deviation dσ , between limits of −∞  and x∆ , i.e. 

( )dx σΦ ∆ . 
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(where logbx ξ= , giving xbξ = ), we need to convert 

xθ∆  to a difference of physical values at threshold, which 

we call θξ∆ .  If the lower stimulus value in physical units 

is pξ  (the subscript, p, standing for “pedestal”, the term 

often used to refer to the lower of two contrasts in a con-

trast discrimination experiment), then the higher stimulus 

value at threshold is p θξ ξ+ ∆ .  xθ∆  is then given by 

log ( ) log ( )b p b pxθ θξ ξ ξ∆ = + ∆ − . (E.4) 

Rearranging Equation (E.4) to make θξ∆  the subject, we 

get 

( 1)
x

pb θ
θξ ξ∆∆ = −  (E.5) 

( )1

( 1)d P
pb θσ

θ ξξ
−Φ −∆ = , (E.6) 

and so the Weber fraction, pW θξ ξ= ∆ , is given by 

( )1

1 1d Px
W b b θθ σ −Φ∆= − = − . (E.7) 

In summary, Equations (E.2) and (E.3) give, respec-

tively, the 2AFC proportion correct and the discrimination 

threshold, xθ∆ , as functions of dσ , where both xθ∆  and 

dσ  are measured in the same units as the stimulus value, 

x.  For some feature dimensions, such as orientation, we 

would take x to be the physical stimulus value.  For other 

feature dimensions, such as contrast or spatial frequency, 

it will turn out to be more appropriate to take x to be the 

logb  of the physical stimulus value.  In the latter case, the 

Weber fraction for physical stimulus units is given by 

Equation (E.7), which again is a function of dσ , where 

dσ  is measured in the same units as x, not the physical 

stimulus units. 

If we estimate dσ  using the Fisher information, then 

we obtain expressions that link all these psychophysical 

performance measures (proportion correct, discrimination 

threshold, Weber fraction) to the properties of the neurons. 

Let 
1̂x

σ  and 
2x̂

σ  be the standard deviations of the es-

timates, 1̂x  and 2x̂ .  The decision variable is the differ-

ence of these two estimates, so, if the two stimulus esti-

mates are statistically independent, the variance of the de-

cision variable is the sum of the variances of the two esti-

mates.  This gives 

1 2

2 2
ˆ ˆd x xσ σ σ= + . (E.8) 

Let us define ( )xτ  to be the precision with which the ob-

server can decode a stimulus with value x.  Then, by defi-

nition, 
1

2
ˆ1( ) 1 xxτ σ=  and 

2

2
ˆ2( ) 1 xxτ σ= .  Using these 

expressions to substitute for 
1

2
x̂σ  and 

2

2
x̂σ  in Equation 

(E.8), we obtain 

1 21 ( ) 1 ( )d x xσ τ τ= + . (E.9) 

Using Equations (E.1) and (E.9) to substitute for x∆  and 

dσ  in Equation (E.2), we get 

1 2

1 2

(correct)
1 ( ) 1 ( )

x x
P

x xτ τ

 −
= Φ 

 + 
. (E.10) 

We can use a similar approach to find a function that 

gives xθ∆  for a given pedestal, px , i.e. the lower of 1x  

and 2x .  To do this, we cannot use Equation (E.9), be-

cause that requires us to know both stimulus values at 

threshold, i.e. we have to know the threshold already.  To 

get around this problem, we can assume that the two stim-

uli are close enough at threshold for the precision to be 

about the same in both cases, so 

1 21 ( ) 1 ( ) 1 ( )px x xτ τ τ≈ ≈ . (E.11) 

Using Relation (E.11) to substitute for 11 ( )xτ  and 

21 ( )xτ  in Relation (E.9), we get  

2 ( )d pxσ τ≈ , (E.12) 

We can then use Relation (E.12) to substitute for dσ  in 

Equations (E.3) and (E.7) to give the threshold perform-

ance in terms of the precision for decoding the pedestal: 

( )12 ( )px x Pθ θτ −∆ ≈ Φ , (E.13) 

( )12 ( )
1

px P
W b

θτ −Φ
≈ − . (E.14) 

These can be inverted to give 

( )
2

1

( ) 2p

P
x

x

θ

θ
τ

− Φ
 ≈
 ∆ 

 (E.15) 

and 

( )
2

1

( ) 2
log ( 1)

p
b

P
x

W

θτ
− Φ

 ≈
 + 

. (E.16) 

If the threshold performance level is defined as 

0.760Pθ = , then we have 
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( )1 1 2Pθ
−Φ ≈     when 0.760Pθ = . (E.17) 

Using Relation (E.17) to substitute for ( )1 Pθ
−Φ  in Rela-

tions (E.13) to (E.16), we obtain some particularly simple 

expressions relating psychophysical performance to preci-

sion when 0.760Pθ = : 

1 ( )px xθ τ∆ ≈ , (E.18) 

1 ( )
1

px
W b

τ
≈ − , (E.19) 

2( ) 1 ( )px xθτ ≈ ∆ , (E.20) 

2( ) 1 [log ( 1)]p bx Wτ ≈ + . (E.21) 

In summary, Relation (E.10) describes the psychomet-

ric function for 2AFC discrimination in terms of the 

stimulus difference, 1 2x x− , and the precision with 

which each stimulus, x, can be decoded.  Relations (E.13) 

and (E.18) describe the relationship between precision and 

the threshold stimulus difference, xθ∆ .  x may be the 

physical stimulus value, or its logarithm.  In the latter 

case, Relations (E.14) and (E.19) give the Weber fraction, 

i.e. the ratio of stimulus difference to pedestal at threshold 

when the stimulus values are expressed in physical units 

(although, in these expressions, the precision, ( )pxτ , is 

still the reciprocal of the variance of decoded log stimulus 

values).  Relations (E.15) and (E.20) give the precision 

required to yield a threshold of xθ∆ .  Relations (E.16) and 

(E.21) give the precision required to yield a Weber frac-

tion of W. 

For Weber fractions of substantially less than 1, which 

tend to occur in real experiments, Relations (E.16) and 

(E.21) can be simplified because, for 1W << , 

log ( 1) ln( 1) ln lnb W W b W b+ = + ≈  (the near-equality is 

derived from the Mercator series, 2ln( 1) 2W W W+ = − +  

3 43 4W W−  ...), which approaches W for small W.  Sub-

stituting lnW b  for log ( 1)b W +  in Relation (E.16), we 

get 

( )
2

1

2

2 ln
( )p

P b
x

W

θ
τ

− Φ ≈ . (E.22) 

Thus, to reduce the Weber fraction by a factor of ϕ, we 

need to increase the precision by a factor of about 2ϕ . 

 

Appendix F: Investigating S(q) 

 

In this appendix, we investigate the function ( )S q  

that appears in Equation (48) of the main paper. 

First, we derive Equation (49): 

3

(1)
( )

S
S q

q
= . 

We can write ( )S q  as 

( ) ( )S q f z dz

∞

−∞

= ∫ , (F.1) 

where ( )f z  is a function of z given by 

( )
( )
2 2

2
0 max

exp 2( )
( )

exp ( )

z qz
f z

qz r r

−
=

− +
. (F.2) 

Let y qz= .  Then 

dy
q

dz
= . (F.3) 

Therefore,  

1
( ) ( )

dy
S q f z dz

q dz

∞

−∞

= ∫  (F.4) 

1
( )) (f y q dyS q

q

∞

−∞

= ∫  (F.5) 

( )
( )
2 2

3 2
0 max

exp 21

ex
)

p
(

y y
dy

q
S

y r r
q

∞

−∞

−
=

− +∫  (F.6) 

3

(
( )

1)S
S q

q
= . □ (F.7) 

Next, we verify the approximation of (1)S  given in Rela-

tion (52): 

( )0 max
(1)

2

Q r r
S

π
≈ , 

which can be rewritten as  
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( )0 max 2 (1) 1Q r r Sπ  ≈  . (F.8) 

We arrived at this approximation of (1)S  by hypothesiz-

ing that Equation (53) would be a close approximation of 

the right hand side of Relation (50), and then working 

back to Relation (52).  Figure F.1 plots the left hand side 

of Relation (F.8) for 0 max0.0001 10,000r r≤ ≤ .  The val-

ues of (1)S  were calculated by sampling ( )f z  in Equa-

tion (F.2) (with 1q = ) between 10z = −  and 10z = , at 

small intervals, 0.0001zδ = , adding up the function val-

ues, and multiplying the sum by zδ .  For 

0 max0 0.119r r< < , our approximation slightly overesti-

mates (1)S  by a factor that never exceeds 0.7% of (1)S  

(the peak of the function in Figure F.1 is 1.00687, which 

occurs at 0 max 0.0220r r = ).  For 

0 max0.120 10,000r r< < , our approximation underesti-

mates (1)S , but not by much: Even for 0 maxr r  as high as 

1, the underestimation is only about 3% of (1)S , and the 

underestimation is always less than 6% of (1)S . 

 

 

Figure F.1.  Testing the accuracy of our approximation of 

(1)S (Relation (52) of the main paper).  The curve plots the ap-

proximation as a proportion of (1)S  for different values of 

0 maxr r . 

 

 

 

 

 

Appendix G: Solving the integral 
in Equation (60) 

 

We needed to find the definite integral, T, given by 

( )
max 2 ln( )

3
ln( )

0

( ) r h h h

h h

m m q m m
h

q m m qx

m b
T d

b b

ζ

ζ

ζ
ζ

∞

=
+∫  (G.1) 

Mathematica was unable to solve this definite integral in 

the form presented in Equation (G.1).  It could produce the 

indefinite integral, but inserting ∞  into this expression 

gave an indeterminate form, and we could find no way of 

obtaining a determinate form using either substitution or 

l’Hôpital’s rule.  However, we found that, by making sub-

stitutions, we could rewrite Equation (G.1) in a form that 

Mathematica was able to solve. 

For convenience, we repeat Equation (C.4) (identical 

to Equation (57) of the main paper) here: 

ln( )h hz m mζ= . (G.2) 

This gives us 

h

d
m

dz

ζ
ζ= . (G.3) 

Next, let us define 

mze
y

m
= , (G.4) 

where 

maxh rm m m= + . (G.5) 

Then 

ln( ) ln( )h hm m z my mζ = = , (G.6) 

and, using Equation (G.2) to substitute for z in Equation 

(G.4), and rearranging, we obtain 

max( ) r hm m

h
h

my
m

m
ζ

ζ
= . (G.7) 

Also, 

0 0yζ = ⇒ = , (G.8) 

as ζ → ∞ , y→ ∞ ,  (G.9) 

hmd d dz

dy dz dy my

ζζ ζ
= × = . (G.10) 
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Using Equations (G.6) and (G.7) to substitute for 

ln( )h hm mζ  and max( ) r hm m

hm ζ  in Equation (G.1), we 

obtain 

( )
2 ln( )

3
ln( )

0

q my m

q my m qx h

b my
T d

m
b b

ζ
ζ

∞

= ×
+∫  (G.11) 

Using (G.8), (G.9) and (G.10) to change the integration 

variable in Equation (G.11) from ζ to y, we obtain 

( )
2 ln( )

3
ln( )

0

q my m

q my m qx

b
T dy

b b

∞

=
+∫  (G.12) 

If we define 

ln( )q b mη = , (G.13) 

then Equation (G.12) simplifies to 

( )
2

3

0

( )

( ) mx

my
T dy

my e

η

η η

∞

=
+∫ . (G.14) 

This integral converges (i.e. has a finite solution) for 

1η > .  Mathematica was able to solve it, and gave the an-

swer as 

1

3

(1 )( ) csc( )

2

mx mxe e m
T

η η η ηη π π η

η

− − −+
= , (G.15) 

which can be rewritten as 

( )
( )

( )

32 sin

m xm m e
T

m

γπ γ

γ π γ

−+
=  (G.16) 

where 

lnq bγ = . (G.17) 

The restriction 1η >  corresponds to mγ > . 

In conclusion, then, 

( )
max 2 ln( )

3
ln( )

0

( ) r h h h

h h

m m q m m
h

q m m qx

m b
d

b b

ζ

ζ

ζ
ζ

∞

=
+∫  

( )
( )

( )

32 sin

m xm m e

m

γπ γ

γ π γ

−+
, (G.18) 

where 

maxh rm m m= +  (G.19) 

and 

lnq bγ = , (G.20) 

provided that 

mγ > . (G.21) 

 

Appendix H: Simulation Methods 

 

Sampling the stimulus axis 
 

In each simulation of contrast discrimination, the 

stimulus value, x, fell between −2 and 0; for simulations of 

spatial frequency discrimination, x fell between 0.4 and 

1.2.  Between the lowest and highest stimulus level, the 

stimulus axis was sampled in steps of max 5τ , where 

maxτ  is the maximum precision (predicted from the Fisher 

information) across the range of stimulus levels.   

 

Generating spike counts 

 

For each stimulus value, x, we simulated the presenta-

tion of 10,000 stimuli.  On each simulated stimulus pres-

entation, we sampled a pseudorandom gain value, g, from 

a Gamma distribution with mean 1 and standard deviation 

Gσ .  For each neuron, j, on that stimulus presentation, we 

sampled a pseudorandom spike count from an independent 

Poisson distribution with mean ( )jg r x× , where ( )jr x  is 

the output of neuron j’s tuning function, given by Equa-

tion (4) or (6) of the main paper, as appropriate. 

 

Decoding the spike counts 

 

The spike counts were decoded as described in the 

main paper. 

 

Evaluating model performance 

 

The model’s precision for each stimulus level, x, was 

defined as the reciprocal of the variance of estimated 

stimulus values across the 10,000 presentations of that 

stimulus level. 

We also used the estimated stimulus values to simu-

late 2AFC discrimination experiments.  For each value of 



Supplementary Appendices May & Solomon 10 

 

x, we took each numbered stimulus estimate (1 to 10,000) 

and compared it with the same numbered stimulus esti-

mate for all higher stimulus values.  Each comparison rep-

resented a trial in a 2AFC discrimination experiment, in 

which the lower-valued stimulus was the pedestal, and the 

higher-valued stimulus was the target.  The response was 

taken to be correct if the stimulus with higher x had a 

higher estimated x, and incorrect if the stimulus with 

higher x had a lower estimated x.  For each pair of stimuli, 

we then found the number of correct responses, and di-

vided by the total number of 2AFC trials for that pair (al-

ways 10,000).  This gave us a psychometric function of 

stimulus difference against probability correct for the 

model.  Assuming that the stimulus level, x, was the log of 

the physical stimulus values, we expressed each stimulus 

difference in physical stimulus units, and fitted a Weibull 

psychometric function (May & Solomon, 2013) to the 

model’s percent-correct data.  We used a Weibull function 

with two parameters: the “shape” parameter, β, and the 

“threshold” parameter, α, which gives the stimulus differ-

ence corresponding to a proportion correct of 

1 0.5 0.816...e− ≈ .  For the simulations of Meese et al.’s 

(2006) experiment, the discrimination threshold is simply 

given by α, since that is how Meese et al. defined it.  For 

the other simulations, the discrimination threshold was 

defined as the stimulus difference (in physical units) that 

corresponded to a proportion correct of 0.75 on the fitted 

Weibull function. 

 

Appendix I: Fisher information of 
the bivariate gamma-Poisson 
mixture distribution 

 

The Fisher information, J, for decoding stimulus x is 

given by the average negative 2nd derivative of the log-

likelihood function: 

2

2

ln ( | )d P X x
J

dx

= =
= −

N n
, (I.1) 

where y  is the trial-averaged value of y.  If there are just 

two neurons, i and j, then, from Equation (22) of the main 

paper, we have 

ln ( | )P X x A B C= = = + −N n  

+ terms independent of x, (I.2) 

where 

ln( )i iA n r= , (I.3) 

ln( )j jB n r= , (I.4) 

( ) ( )2 21 ln 1i j G i j GC n n r rσ σ= + + + + . (I.5) 

Note, we have used ir  and jr  in place of ( )ir x  and ( )jr x  

to reduce notational clutter.  Then, 

2 2 2 2

2 2 2 2

ln ( | )d P X x d A d B d C

dx dx dx dx

= =
= + −

N n
, (I.6) 

where 

22

2 2

[ ( ) ]i i i i

i

n r r rd A

dx r

′′ ′−
= , (I.7) 

22

2 2

[ ( ) ]j j j j

j

n r r rd B

dx r

′′ ′−
= , (I.8) 

( )( ) ( )
( )

2
2

2 2
2

1

1

i j G i j i j

i j G

r r r r r r
d C

dx r r

σ

σ

′′ ′′ ′ ′+ + + − +
=

+ +
 

( )21i j Gn n σ× + + . (I.9) 

To find the mean value of the negative 2nd derivative of 

the log-likelihood function, we make multiple usage of the 

following easily proved theorem: 

ay b a y b+ = + , (I.10) 

Because of Equation (I.10), the mean values of the expres-

sions in Equations (I.7) to (I.9) can be found simply by 

replacing in  and jn  with their mean values, which are ir  

and jr , respectively.  This gives us 

22

2

( )i
i

i

rd A
r

rdx

′
′′= − , (I.11) 

22

2

( )j
j

j

rd B
r

rdx

′
′′= − , (I.12) 

( )22

2 21

i j

i j

i j G

r r
d C

r r
dx r r σ

′ ′+
′′ ′′= + −

+ +
. (I.13) 

Thus, 
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2 2 2

2 2 2

d A d B d C
J

dx dx dx
= − − +  (I.14) 

( )222

2

( )( )

1

i jji

i j i j G

r rrr

r r
J

r r σ

′ ′+′′
= + −

+ +
. □ (I.15) 

It is important to note that, for this two-neuron system, 

the Fisher information can greatly overestimate the decod-

ing precision.  Suppose that i jr r′ ′= −  at x (i.e. the tuning 

curve slopes are equal in magnitude and opposite in sign).  

Then, 

22 ( )( ) ji

i j

rr
J

r r

′′
= + . (I.16) 

Equation (I.16) gives the Cramér-Rao bound on the de-

coding precision when the gain is unknown.  This is 

higher than the decoding precision that we derived from 

the Cramér-Rao bound when the gain is known, which 

would be the value in Equation (I.16) multiplied by 
21 Gσ−  (see Relation (31) of the main paper).  This would 

seem to imply that decoding precision gets better if we 

ignore our knowledge of the gain level!  The resolution of 

this apparent paradox is that the Cramér-Rao bound is not 

a good estimate of the decoding precision when the num-

ber of neurons is small: It is an upper bound, but is not 

always achievable, even as the spike rate approaches 

infinity.  As a check, we set up a Monte Carlo simulation 

of a two-neuron system like the one in this appendix for 

Gaussian-tuned neurons such that i jr r′ ′= −  at x.  We car-

ried out maximum-likelihood decoding both with and 

without knowledge of the gain, and found that the decod-

ing precision was consistently slightly better when the 

gain was known. 

 


