Supplementary Figure S6. Demonstration of the anatomic meaning of perimeter-adjusted growth rate of geographic atrophy (GA) and eye-specific GA border expansion rate (BER). **A.** The change in GA area (δA) over an infinitely short time period is a thin ring (shaded blue) with an infinitely small linear growth (δs). **B.** Based on the principle of calculus, an infinitesimally thin ring is the same as a rectangle and the change in GA area (δA) can be calculated as the Total Perimeter \times δs. GA perimeter-adjusted growth rate is defined as GA area growth rate/mean total GA perimeter between the first and last visit, which is $\frac{\delta A}{\text{Total Perimeter}}$ in this case. The eye-specific GA BER is the direct measurement of the mean linear expansion rate of GA border, which is δs in this example. Since $\frac{\delta A}{\text{Total Perimeter}} = \delta s$ over an infinitely short time period, GA perimeter-adjusted growth rate equals to the eye-specific BER under this ideal circumstance (i.e., precisely delineated GA border and infinitely small follow-up duration). But in reality, the 2 parameters are influenced by different measurement errors and the follow-up duration. GA perimeter-adjusted growth rate is influenced by measurement errors in GA area and perimeter, whereas eye-specific GA BER is affected by measurement errors in the linear distance determined from the Euclidean distance map.