
1. fMRI acquisition and pre-processing 

This study used a 3.0T MR scanner (Siemens Magnetom Skyra 3.0T) with a 32-channel head array 

coil. Subjects were scanned in a supine, head-first position. T1-weighted images were firstly obtained to 

exclude severe atrophy in subjects’ brain. Scan parameters were as follows: MPRAGE sequence, 

repetition time (TR)/ echo time (TE)/inversion time (TI) = 2300/2.29/900ms, field of view (FOV) = 240 

mm × 240 mm, slice thickness = 1 mm, slice gap = 0 mm, matrix = 256 × 256, number of signal averages 

= 1, flip angle = 8°, bandwidth = 123.36 Hz. Before resting-state fMRI scan, subjects were instructed to 

close their eyes and stay awake, calm breathing, keep a clear consciousness and not to engage in any 

specific thinking activity. fMRI data were obtained using echo planar imaging sequence with following 

parameters: TR / TE= 2000/30 msec, FOV = 240 mm × 240 mm, matrix = 64 × 64, slice number =33, 

slice thickness = 3 mm, slice gap = 1 mm, flip angle = 90°, scan duration time = 480s (240 volumes).  

Data Processing and Analysis for Brain Imaging (DPABI, Version 3.0) was used for fMRI data 

preprocessing. Data preprocessing included the following steps [1]: (1) Data format conversion. (2) The 

first 10 volumes of the fMRI data were discarded due to the consideration of instability of the initial MRI 

signal [1]. (3) Slice timing. (4) Head motion correction by linear regression (corrected for translational 

and rotational misalignments). Subjects with large head motion were excluded using a threshold of 

maximum translation > 1.5mm, maximum head rotational motion > 1.5 degree and framewise 

displacement by Power et al. > 0.5mm. All the enrolled subjects passed this threshold and no data were 

discarded. (5) fMRI data were normalized to the Montreal Neurological Institute (MNI) space using 

Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra algorithm (DARTEL). 

During normalization, structural MRI data were co-registered to fMRI data to avoid the effect of cortical 

thinning or decreased brain volume on the construction of visual atlas. (6) Linear detrend of the time 



courses. (7) Nuisance covariates (e.g. head motion parameters, whole brain, white matter) removal. (8) 

Band-pass filtering (0.01-0.08 Hz). (9) Scrubbing. 

2. Dice coefficient and adjusted rand index 

Dice coefficient is a widely-used metric in image segmentation [1], and it is also widely used in 

evaluating the reproducibility of brain parcellations. It can be calculated by [1] 

                                𝐷ic𝑒 =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
                                 (1) 

where X and Y derives from two parcellations. A dice value of 1 represents X and Y are perfectly aligned 

[2]. 

Adjusted rand index (ARI) is also a metric to assess the reproducibility of parcellations [3]. Unlike 

dice coefficient, this index does not take into account clustering numbers, so it can effectively evaluate 

two parcellations with different cluster numbers. ARI classifies n(n-1)/2 pairs of voxels into one of the 

four sets (where n is the total number of voxels in the visual cortex), namely N11, N00, N01, N10 [2,3]. For 

two parcellations X and Y, ARI can be calculated by [3,4] 

                      𝐴𝑅𝐼(𝑈, 𝑉) =
2(𝑁00𝑁11−𝑁01𝑁10)

(𝑁00+𝑁01)(𝑁01+𝑁11)+(𝑁00+𝑁10)(𝑁10+𝑁11)
         (2) 

Where N11 represents the number of pairs from the same cluster in both X and Y, N00 represents the 

number of pairs from different clusters in X and Y, N01 represents the number of pairs from the same 

clusters in X, but different clusters in Y, and N10 represents the number of pairs from the same clusters in 

Y but different clusters in X. ARI value of 1 implies a perfect uniformity between parcellations X and Y. 

3. Homogeneity index and silhouette coefficient 

To measure the homogeneity index of different subregions, an average similarity between every pair 

of voxels within a parcel was computed which could be defined as the Pearson’s correlation coefficient 

between the “connectivity fingerprints” of voxels [2,5,6]. For each voxel vk, we yielded the connectivity 

fingerprint by correlating vk with the rest of cortical voxels and applying Fisher’s r-to-z transform to the 



resulting correlation coefficient [2,6]. 

Another widely used technique to assess the homogeneity of clustering algorithms and quantify 

parcellation reliability is silhouette coefficient (SC) [7]. SC could assess the uniformity of parcels as well 

as the degree of separation between them. It can be computed by [2,7] 

𝑆𝐶 =
𝑏𝑖−𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖,𝑏𝑖)
                              (3) 

where ia  and ib could be calculated severally by [1,6] 

             𝑎𝑖 =
1

𝑛𝑘−1
∑ 𝑑(𝑣𝑖𝑗∈𝑈𝐾,𝑖≠𝑗 , 𝑣𝑗)                           (4) 

                           𝑏𝑖 =
1

𝑀
∑ 𝑑(𝑣𝑖 , 𝑣𝑗)𝑗∈ℵ(𝑢𝑘)                              (5) 

For a given parcellation U{(U1, U2, ..., Uk }, ai and bi correspond to within-parcel and inter-parcel 

dissimilarity with respect to voxel vi kU , respectively;  nk denotes the voxel number of 𝑈𝑘; ℵ(𝑈𝑘) 

denotes the adjacent parcel set of 𝑈𝑘 , in which the number of voxels is M; 𝑑(𝑣𝑖 , 𝑣𝑗)  denotes the 

Pearson distance between vi and vj, which could be computed by 1-r, and r is Pearson correlation [2]. 

The value range of SC is [-1,1], and a SC value of 1 implies a high clustering quality. The calculation of 

SC will return a 1n  matrix, where n is the number of parcellation. We averaged this matrix to get a 

global score for each parcellation. 

4. Calculation of network properties 

In a binary network, the degree of a node is the number of edges that are connected to the node, which 

reflects the nodal information communication ability in the functional network [8]. The averaged nodal 

degree is calculated as [8] 

𝑘 =
1

𝑁
∑ 𝑘𝑖𝑖                              (6) 

Where N is the number of nodes (number of parcels), ki is the degree of the ith node (parcel). 

  Nodal efficiency for a node represents the ability of information transfer for that given node in the 



network [8]. It can be calculated by formula (7) [8] 

 𝐸𝑛𝑜𝑑𝑎𝑙_𝑖 =
1

𝑁−1
∑

1

𝑑𝑖𝑗
𝑗,𝑗≠𝑖                           (7) 

In Formula (7), N denotes the number of nodes in the network, in this study, the number of clusters in 

the visual cortex, dij denotes the distance between the ith node and the jth node. 

  In graph theory, a small-world network is a type of network with many short links connecting 

neighboring nodes, and few distant links creating shortcuts across the network [4,8]. As a result, a small-

world network is more efficient in information transfer than regular networks, and has greater local 

connectivity than random networks [8]. For a given network, the small-world index 𝜎 can be calculated 

as [4,8]: 

𝜎 =
𝑐

𝑙
                            (8) 

Where c is the clustering coefficient of the network, and l is the shortest path length of the network. And 

a small-world index above 1 indicates a small-world topology of the given network [4]. 

  In graph theory, the rich chub organization characterizes an architecture with densely connected nodes 

forming a hub in the network [8]. In contrast, the links of non-hub nodes are fewer than hub nodes. For 

a given network, rich club index ∅ can be calculated by the following formula [8]: 

∅(𝑘) =
2𝐸𝑘

𝑁𝑘(𝑁𝑘−1)
                      (9) 

Where k is a degree threshold, Nk is the number of nodes with nodal degree larger than k, and Ek is 

the number of edges among those nodes. 
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Supplementary Table S1. Demographic and clinical information of POAG patients and HCs. 

 POAG HC 

Age (years) 49.22 ± 15.26 49.90 ± 5.62 

Sex (M / F) 15 / 21 7 / 13 

IOP_L (mmHg) 35.42 ± 16.16 17.06 ± 3.63 

IOP_R (mmHg) 33.94 ± 16.04 15.42 ± 3.68 

Mean IOP (mmHg) 36.42± 12.15 16.42± 1.79 

RNFL_L (μm) 74.77 ± 33.06 NA 

RNFL_R (μm) 86.25 ± 22.85 NA 

Disease duration (day) 136.39 ± 160.38 NA 



POAG: primary open angle glaucoma; HC: healthy control; IOP: intraocular pressure; RNFL: retinal 

nerve fiber layer. NA represents not applicable. M and F represent male and female. L and R represent 

left and right. 

Supplementary Table S2. Two clustering approaches. 

Name Resolution Description Application in this study 

K-means Varying K-means clustering algorithm first assumes X 

is a data set including N elements, 

X={x1,x2,...,xn}, and after that, this algorithm 

needs to find a partition P={C1,C2,...,Ck} which 

could minimize the function 

      𝑓(𝑃𝑘) = ∑ ∑ 𝑑(𝑥𝑖 , 𝑚𝑖)𝑥𝑖∈𝑐𝑖
𝑘
𝑖=1  

Where ∑ 𝑥𝑖𝑥𝑖∈𝑐𝑖  denotes the clustering center 

of ith cluster, i=1,...,k; ni denotes the number of 

data items of Ci; mi=1/ni; 𝑑(𝑥𝑖 , 𝑚𝑖) denotes 

the distance from xi to mi, such as Euclidean 

distance. 

K-means clustering was 

applied to the group-

averaged connectivity 

matrix with spatial voxel 

coordinates to improve 

spatial contiguity of the 

parcellations. 

Ward  Varying The Ward clustering combines the two most 

similar data points among all the data points by 

calculating the similarity between the two 

kinds of data points, and iterates this process 

repeatedly. To put it simply, the hierarchical 

clustering is to determine the similarity 

Ward clustering was 

applied to the group-

averaged connectivity 

matrix with spatial voxel 

coordinates to improve 

spatial contiguity of the 



between each category of data points and all 

data points by calculating the distance between 

them. The smaller the distance, the higher the 

similarity. The two nearest data points or 

categories are combined to generate a cluster 

tree. 

parcellations. 

 

 

Supplementary Figure S1. Group-level homogeneity results in HCs using parcellations generated from 

POAG group. (a) Homogeneity index. (b) SC. 

 

Supplementary Figure S2. Network properties between POAG patients and HCs using the data-driven 

atlas (K-means algorithm) generated from 36 POAG patients. (a) Nodal degree. (b) Nodal efficiency. (c) 



Small-world index. (d) Rich club index. 

 


