SUPPLEMENTARY METHOD

RT-PCR

ARPE-19 cells (ATCC) were harvested after treatment with either rAAV2-sVEGFRv-1, rAAV2-GFP, or mock-treatment at 10,000 MOI. Eyes of the rat retinal tissue model were removed for in vivo experimentation. Total RNA was prepared using TRIzol reagent (Invitrogen). One μg of the total RNA was reverse transcribed into cDNA using the MG cDNA Synthesis Kit (MGmed, Seoul, Korea). Semi-quantitative RT-PCR was performed on each of the samples and run on 2% agarose gel to verify transduction in vitro. The following primer sets were used: ß-actin (forward: 5’-CACAGAGCCTCGCTTTTGCCGAT, reverse: 5’-GGAGCCACACGAGCTCATTG), GFP (forward: 5’-GGCGACAAGCAGAAGAAC, reverse: 5’-CGCGCTTCTCGTTGGGCTTT), and sVEGFR-1 (forward: 5’-TGTCATCGTTTCCAGACCG, reverse: 5’-GGGTGCCAGAACCACCTTGAT).
SUPPLEMENTARY FIGURE LEGEND

Supplementary Figure 1. sVEGFRv-1 mRNA expression by rAAV2-sVEGFRv-1.

The transduction ability of rAAV2s, into which either sVEGFRv-1 or GFP (a negative control) were packaged, was proved by semi-quantitative RT-PCR (n=3) both in vitro (A, C) and in vivo (B, D). ARPE-19, a human epithelial cell line, was infected with rAAV2-GFP (lane 2), rAAV2-sVEGFRv-1 (lane 3), or subjected to a mock treatment (lane 1). β-actin was used as a control. Bands corresponding to both GFP and sVEGFRv-1 were readily detectable, with similar results obtained in rat retinas.