Supplementary Methods and

Supplementary Figures S1-S5

for

Temporal requirement of *Mab21l2* during eye development in chick reveals stage dependent functions for retinogenesis

Soufien Sghari and Lena Gunhaga

Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden

Correspondence: Lena Gunhaga, Umeå Centre for Molecular Medicine, Building 6M 4th

floor, Umeå University, 901 87 Umeå, Sweden; lena.gunhaga@umu.se

Supplementary Methods

Design of Mab2112 constructs

The *Mab2112* loss-of-function construct was made by using a 680bp long double stranded (ds) RNA from *Mab2112* cDNA and cloned into a pCRII vector using the following primers:

Forward primer: ATGGGCGTCTTCAACTTCGT;

Reverse primer: GAGATGAGCTGCAGCAGGA.

To make dsRNA, sense and antisense strands of RNA were synthesized using Sp6 and T7 polymerases, respectively. After elimination of the cDNA template, strands of RNA were annealed for 5 minutes at 95°C and then purified [1].

The gain-of-function construct was made by cloning *Mab21l2* cDNA from RNA isolated from E6 chick eyes into a pCAG-P2A-*EGFP*-m5 vector. Full length *Mab21l2* coding sequence was amplified from cDNA devoid of the stop codon to be translated continuously with the P2A peptide and GFP protein using following primers:

Forward: 5'-ATGATCGCCGCCAG-3'

Reverse: 5'-TAGTTTGTCGAGGCTTTTGGGATTG-3'

The full length *Mab2112* was cloned in front of P2A-*EGFP* sequences using SmaI and Nhe1, and the sequence confirmed through sequencing.

In situ hybridization

Fragments of chick *Mab2111* (563bp) and *Mab2112* (680bp) were amplified from genomic DNA. Fragments of chick *Atoh7/Ath5* (600bp) and *NeuroD4/Ath3* (600bp) were amplified from cDNA derived from E6 eye tissue. The following primers were used:

<u>Mab2111</u> Forward: 5'-ACGAGATGGACAACCGCTAC-3' Reverse: 5'-GCCCATCTGCAGTCTGTTCT-3' <u>*Mab2112*</u> Forward: 5'-ATGGGCGTCTTCAACTTCGT-3'

Reverse: 5'-GAGATGAGCTGCAGCAGGA-3'

<u>Atoh7/Ath5</u> Forward:: 5'-TCCAGTCATTTGGATTCAGGA-3'

Reverse: 5'-TCGCTGTGCATAAGGATCAC-3'

<u>NeuroD4/Ath3</u> Forward: 5'-TACATCTGGGCTCTGTCCGA-3'

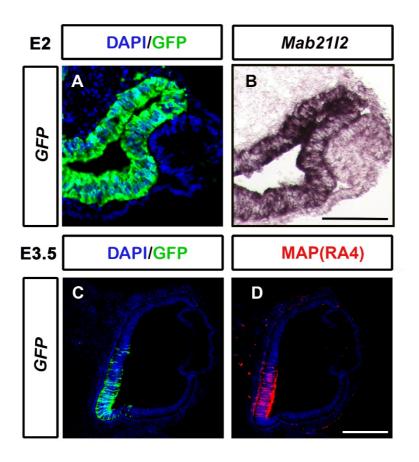
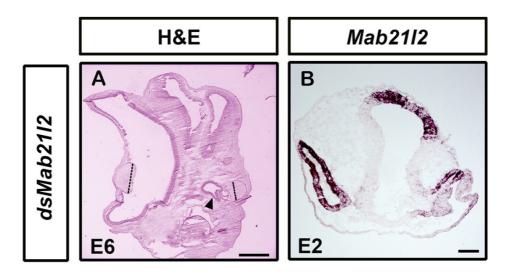
Reverse: 5'-CTGCGTTTTGGAAGTGGGTG-3'

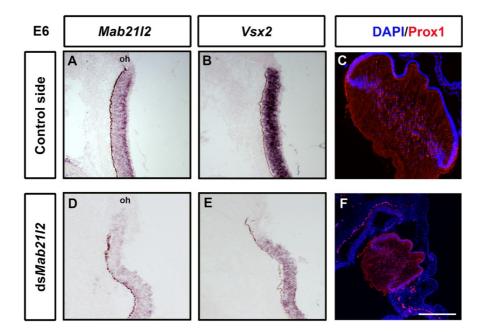
The PCR products were cloned into pCRII (Invitrogen) and the sequence confirmed through

Sanger sequencing.

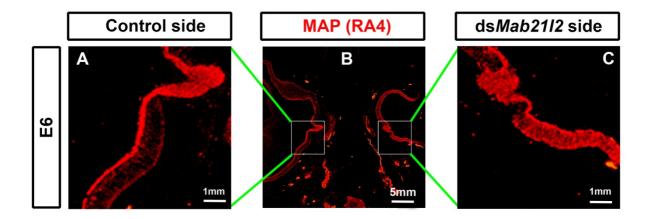
References

1. Pekarik, V., et al., Screening for gene function in chicken embryo using RNAi and electroporation. Nat Biotech, 2003. **21**(1): p. 93-96.


FIGURE S1. GFP over-expression does not affect retina morphology or differentiation.

(**A-D**) Embryos electroporated at HH8-10 with only the *GFP*-expressing vector and cultured to approximately E2 (A,B; N=3) and E3.5 (C,D; N=4). GFP expression in the optic vesicle (**A**) does not affect *Mab21l2* expression (**B**) (N=3/3), and GFP expression in retinal cells (**C**) does not affect MAP expression (**D**) (N=4/4). *Scale bar* 100µm for (**A-B, C-D**).


FIGURE S2. Electroporation of ds*Mab2112* in the prospective optic vesicle does not affect midbrain development, but results in smaller lenses.

(**A**,**B**) Transversal sections of embryos electroporated at HH8-10 with the *Mab2112*-expressing vector and cultured to approximately E6 (A; N=4) and E2 (C,D; N=4), showing both control and ds*Mab2112* sides. (**A**) H&E staining indicates a rudimentary retina in the ds*Mab2112* side (arrowhead) associated to a smaller lens, but with an apparent normal midbrain (N=4/4). The length of the lens equator (dotted line) in the electroporated side was significantly shorter (617±27 µm) compared to the control side (972±8 µm) (N=4; ***t test; *P*<0.0001). (**B**). *In situ* hybridization indicates that ds*Mab2112*-electroporation results in specific down-regulation of *Mab2112* in the electroporated side, compared to the control side, and without affecting the morphology and the patterning of the forebrain (N=4/4). *Scale bars* 1mm for (**A**) and 100µm for (**B**).

FIGURE S3. ds*Mab2112* RNA inhibitory effect maintain suppression of *Mab2112* and *Vsx2* expression in the retina at E6, but does not affect lens patterning.

(A-F) ds*Mab2112*-electroporated embryos at HH11-12 and cultured to E6, and analysed by *Mab2112* and *Vsx2 in situ* hybridization and Prox1 immunohistochemistry. (A,D) *Mab2112* expression is still decreased in the GCL in the ds*Mab2112*-electroporated side (D) compared to the control side (A) (N=4/4). (B,E) *Vsx2* expression is reduced in the electroporated side (E) compared to the control side (B) (N=4/4). (C,F) Prox1 expression in the lens of the control side (C) and ds*Mab2112*-electroporated side (F), reveals reduced size, but no apparent changes in patterning in the ds*Mab2112*-electroporated side (N=4/4). *Scale bar* 100µm for (A-F).

FIGURE S4. Down-regulation of *Mab2112* at HH11-12 results in disrupted maturation of postmitotic neurons.

(A-C) Immunohistochemistry analysis using RA4 antibody against chicken MAP on transversal sections of ds*Mab21l2*-electroporated embryos at HH11/12 and cultured to E6 (N=4/4). (A, B-left) The control retina show a GCL-restricted MAP expression (N=4/4). (B-right, C) The ds*Mab21l2*-electroporated eye exhibit a radial MAP expression pattern throughout the retina width, and a malformed optic head with an excavated shape (N=4/4). *Scale bars* 1mm for (A,C) and 5mm for (B).

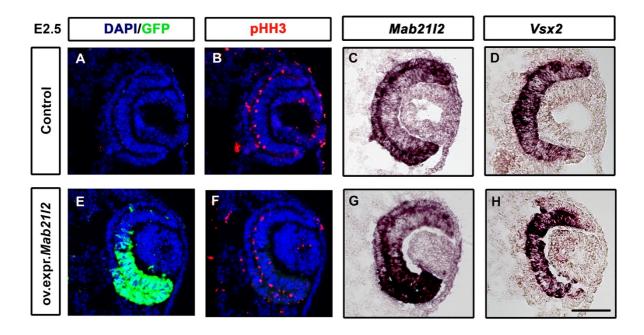


FIGURE S5. No change in the retinal progenitor pool after *Mab2112* over-expression.

(**A-H**) Electroporation with a *Mab21l2*-over-expressing vector at HH8-10 and cultured to E2.5. GFP in (**E**) and *Mab21l2* in (**G**) indicates the electroporated area of the eye compared to the non-electroporated control side (**A**,**C**). No change in pHH3⁺ proliferative cells (B,F; N=5; P=0.14), or the expression of *Vsx2*, indicative of RPCs (**D**,**H**), were detected between control and electroporated side (N=5/5). *Scale bar* 100µm for (**A-H**).