Predictive Mathematical Models for the Spread and Treatment of Hyperoxia-induced Photoreceptor Degeneration in Retinitis Pigmentosa

IOVS — Supplementary Material

Paul A. Roberts*1,2, Eamonn A. Gaffney3, Jonathan P. Whiteley2, Philip J. Luthert4, Alexander J. E. Foss5 and Helen M. Byrne3

1Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
2Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
3Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
4Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
5Queen’s Medical Centre, Department of Ophthalmology, Derby Road, Nottingham, Nottinghamshire, NG7 2UH, UK

*Corresponding author
E-mail address: p.a.roberts@univ.oxon.org (Paul A. Roberts)
Present address: School of Mathematics, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
Figure S1: Simulation results showing exemplar initial oxygen and photoreceptor profiles (see Eq. (7)). The initial oxygen profile is the steady-state distribution corresponding to the initial photoreceptor profile. Panel (a) shows healthy oxygen and photoreceptor profiles without photoreceptor degeneration ($F(\theta, \phi) = 1$). Panel (b) shows oxygen and photoreceptor profiles where photoreceptors have been removed from an annular region with inner and outer boundaries $(\theta_1, \theta_2) = (0.4, 0.6) \times \Theta$ (rad) ($F(\theta, \phi) = \frac{1}{2} (\tanh(S(\theta_1 - \theta)) + \tanh(S(\theta - \theta_2)) + 2)$). Panel (c) shows oxygen and photoreceptor profiles where photoreceptors have been removed from a disc-shaped region with centre eccentricity $\theta_c = 0.3 \times \Theta$ (rad) and radius parameter $\psi = 0.05 \times \Theta$ (rad) ($F(\theta, \phi) = \frac{1}{2} (\tanh(S((\theta - \theta_c)^2 + (\phi - \phi_c)^2 \sin^2(\theta - \psi^2)) + 1))$. See Tables 2 and 3 for the remaining parameter values.
Figure S2: Simulation results showing how retinal degeneration progresses following the loss of an annulus of photoreceptors. Heat maps show the photoreceptor distribution in the initial- (left) and steady-states (right), while θ_1 (rad) and θ_2 (rad) are the initial eccentricities of the inner and outer boundaries of the degenerate annulus respectively. (a) $(\theta_1, \theta_2) = (0.4, 0.6) \times \Theta$ (rad): the degenerate annulus does not expand, (b) $(\theta_1, \theta_2) = (0.08, 0.4) \times \Theta$ (rad): the degenerate annulus expands centrally only, (c) $(\theta_1, \theta_2) = (0.6, 0.9) \times \Theta$ (rad): the degenerate annulus expands peripherally only and (d) $(\theta_1, \theta_2) = (0.08, 0.9) \times \Theta$ (rad): the degenerate annulus expands both centrally and peripherally. See Tables 2 and 3 for the remaining parameter values.