Supplementary material

Figure 1

Influence of the focus adjustment on near-infrared reflectance (NIR) intensity within geographic atrophy (GA). A, B. Fundus autofluorescence images of two eyes with GA. C, D. NIR images of the same eyes shown in A and B. The NIR image on the left (C) shows an isoreflective area of GA, whereas the image on the right (D) shows the more common hyporeflective appearance of GA. E, F. Focus adjustment during NIR acquisition does not appear to influence the NIR intensity within the areas of GA or the surrounding retinal structures.

Figure 2

Influence of subretinal fluid on near-infrared reflectance (NIR) intensity within an area of retinal pigment epithelium (RPE) loss following an RPE tear. Eye-tracked spectral-domain optical coherence tomography (SD-OCT) scans at baseline, 5 and 7-months follow-up. A, C, E. The NIR images show a RPE tear. B, D, F. Eye-tracked SD-OCT line scans corresponding to the green arrow in images A, C, and E. The SD-OCT scans show a progressive increase in NIR intensity that correlates with the resolution of subretinal fluid.
Correlation of the choroidal thickness with NIR

Dolz-Marco et al
Correlation of the choroidal thickness with NIR

Dolz-Marcos et al