Supplementary Figure 1. The model parameter estimates for the amblyopic group (AMB), control group under normal viewing conditions (CTR), and control group with a 2ND filter placed in front of the non-dominant eye (CTR-ND). Each triplet of bars show the relative 12 dB contrast offset favoring the amblyopic/non-dominant eye (left pink bars), 0 dB contrast offset (middle grey bars), and 12 dB contrast offset favoring the fellow fixing/dominant eye (right orange bars). The dotted line shows balanced input from the two eyes (Eye Balance Factor = 0.5). Error bars depict the standard error of the parameter determined by the fitting routine. p_{Fuse_0} = probability of fusion at zero disparity, σ_f = Fusional range, σ_s = Suppression range (note that the two plots are not in the same scale).
Supplementary Figure 2. Results for control participant N1 showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the non-dominant eye, and 12 dB favouring the dominant eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 3. Results for control participant N1 with a 2ND filter in front of the non-dominant eye showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the non-dominant eye, and 12 dB favouring the dominant eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 4. Results for control participant N2 showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the non-dominant eye, and 12 dB favouring the dominant eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 5. Results for control participant N2 with a 2ND filter in front of the non-dominant eye showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the non-dominant eye, and 12 dB favouring the dominant eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 6. Results for control participant N3 showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the non-dominant eye, and 12 dB favouring the dominant eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 7. Results for control participant N3 with a 2ND filter in front of the non-dominant eye showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the non-dominant eye, and 12 dB favouring the dominant eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 8. Results for control participant N4 showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the non-dominant eye, and 12 dB favouring the dominant eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 9. Results for control participant N4 with a 2ND filter in front of the non-dominant eye showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the non-dominant eye, and 12 dB favouring the dominant eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 10. Results for control participant A1 showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the amblyopic eye, and 12 dB favouring the fellow fixing eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 11. Results for control participant A2 showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the amblyopic eye, and 12 dB favouring the fellow fixing eye. Solid lines are model fits for the psychophysical data, with the r² reported for each plot.
Supplementary Figure 12. Results for control participant A3 showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the amblyopic eye, and 12 dB favouring the fellow fixing eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.
Supplementary Figure 13. Results for control participant A4 showing the probability of each of the four responses as a function of disparity. Results for fine-scale blurred edges (higher spatial frequency) are shown in the left column, with the coarse scale (lower SF) shown in the right. The three rows show the different interocular contrast offsets: 0 dB (balanced), 12 dB favouring the amblyopic eye, and 12 dB favouring the fellow fixing eye. Solid lines are model fits for the psychophysical data, with the r^2 reported for each plot.