Mesenchymal Stem Cell-like properties of orbital fibroblasts in Graves’ orbitopathy
Katarzyna Kozdon, Caroline Fitchett, Geoffrey E. Rose, Daniel George Ezra, Maryse Bailly

Supplementary Figures and Table
Methods and Legends
Methods

Immunofluorescence

U937 monocytes were transferred to 6-well plates (Fischer Thermoscientific) with glass coverslips, and differentiated into macrophages by adding 1µg/ml of phorbol 12-myristate 13-acetate (PMA, Promega) to RPMI-1640 medium (Sigma) supplemented with 10% foetal bovine serum (FBS) for three days, then left to recover in RPMI/10%FBS for three days. GO (HO1 line) and control (CO2 line) fibroblasts were detached using enzyme-free cell dissociation buffer (Gibco), plated at 8x10^3 cells/cm² on glass coverslips as above, and left to attach overnight. All cells were fixed for 7 min with 3.7% formaldehyde in cytobuffer (5 mM KCl, 137 mM NaCl, 4 mM NaHCO₃, 0.4 mM KH₂PO₄, 1.1 mM Na₂HPO₄, 2 mM MgCl₂, 5 mM Pipes, 2 mM EGTA, 5.5 mM glucose, pH 6.1), and permeabilised for 10 min with 0.5% Triton-X100 (Sigma) in cytobuffer. Next, the coverslips were rinsed once with 0.1 M glycine in cytobuffer and incubated for an additional 10 min in glycine/cytobuffer. The samples were then blocked/stained for F-actin by incubation for 20 min with 5 μM Rhodamine-phalloidin (Molecular Probes) in TBS (Tris 20 mM, NaCl 154 mM, pH 8) supplemented with 1% Bovine Serum Albumin (BSA), 1% FBS and 1% donkey serum. The coverslips were then incubated with primary antibodies against CD14 and CD73 (BioLegend, 1:50) for an hour, followed by 3 washes of 10 min with TBS/1%BSA, and a 1hr incubation with Alexa 488-conjugated anti-mouse antibodies (Jackson Labs, 1:100). After final washes, the coverslips were mounted with Fluoroshield mounting medium with DAPI (Abcam). Cells were imaged using Ti-E microscope (Nikon) with CoolSNAP HQ2 camera (Photometrics), using a 20X air objective (20X Plan Fluor ELWD ADM with correction collar).
Table Legend

Supplementary Table 1. GO fibroblasts express markers of osteogenesis and chondrogenesis. GO fibroblasts (lines HO1-3) were induced towards osteogenic or chondrogenic differentiation (“differentiated”) or kept in control medium under the same conditions (“undifferentiated”); additionally, cells grown under standard cell culture conditions were tested (“standard”). Expression levels of markers of osteogenesis (BGLAP and SPARC) and chondrogenesis (ACAN, SOX9) were assessed by RT-PCR. Shown is mean the Ct values for 2 independent experiments.
Supplementary Figure S1: GO and control orbital fibroblasts do not express negative MSC marker CD14. GO and control orbital fibroblasts or macrophages were detached with a trypsin-free solution and immunostained for CD14 as monolayers on glass coverslips following a 24 hr adhesion recovery period. **A, B:** GO cell line HO1; **C, D:** Control cell line CO2; **E, F:** human macrophages used as a positive control. Left panel (**A, C, E**) shows F-actin staining (red) and DAPI (blue). Right panel (**B, D, F**) shows CD14 expression. Scale bar: 100 μm
Supplementary Figure S2: GO and control orbital fibroblasts express positive MSC marker CD73. GO (A, B, E; HO1 cell line) and control (C, D, F; CO2 cell line) orbital fibroblasts were detached with a trypsin-free solution and immunostained for CD73 as monolayers on glass coverslips following a 24 hour adhesion recovery period. A, C: CD73 staining; B, D: CD73 (green) and DAPI (blue); E, F: control immunostaining without primary antibody. Scale bar: 100 μm.
Supplementary Figure S3: GO fibroblasts express osteogenic and chondrogenic markers.

Agarose gel electrophoresis was performed on end products of RT-PCR (Supplementary Table 1). Two independent repeats were performed, and the figure shows one of the repeats. Samples were loaded as follows: HO1-3 undifferentiated cells, HO1-3 differentiated cells, HO1-3 standard cells, with top lanes showing genes of interest and bottom lane showing their corresponding housekeeping gene controls. A) BGLAP, S3A1; B) SPARC, HPRT1; C) ACAN, HPRT1; D) SOX9, S3A1.