Supplemental Information

Angiopoietin-1 is regulated by miR-204 and contributes to corneal neovascularization in KLEIP deficient mice

Jakob N. Kather¹,², Julian Friedrich³, Nicole Woik¹,², Carsten Sticht⁴, Norbert Gretz⁴, Hans-Peter Hammes³, Jens Kroll¹,²*

¹Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; ²Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; ³5th Medical Department, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; ⁴Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

*Corresponding author:
Prof. Dr. Jens Kroll
Center for Biomedicine and Medical Technology Mannheim (CBTM)
Dept. of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Germany
Ludolf-Krehl-Str. 13-17
68167 Mannheim, Germany
Phone: +49-(0)621-383-9965
Fax: +49-(0)621-383-9961
Email: jens.kroll@medma.uni-heidelberg.de
www.angiolab.de
Supplemental Figure 1. Both microarray experiments show a high internal consistency. Heat map of Pearson’s correlation coefficient. These data show high within-group correlation and low between-group correlation for both microarray experiments. Overall difference in gene expression is higher between late dystrophy and control (A vs. B) than between early dystrophy and control (C vs. D). This corresponds to a more pronounced phenotype in late dystrophy than in early dystrophy.